Workflow Optimization Using Python Programming, a Tool Kit for Every Geoscientist

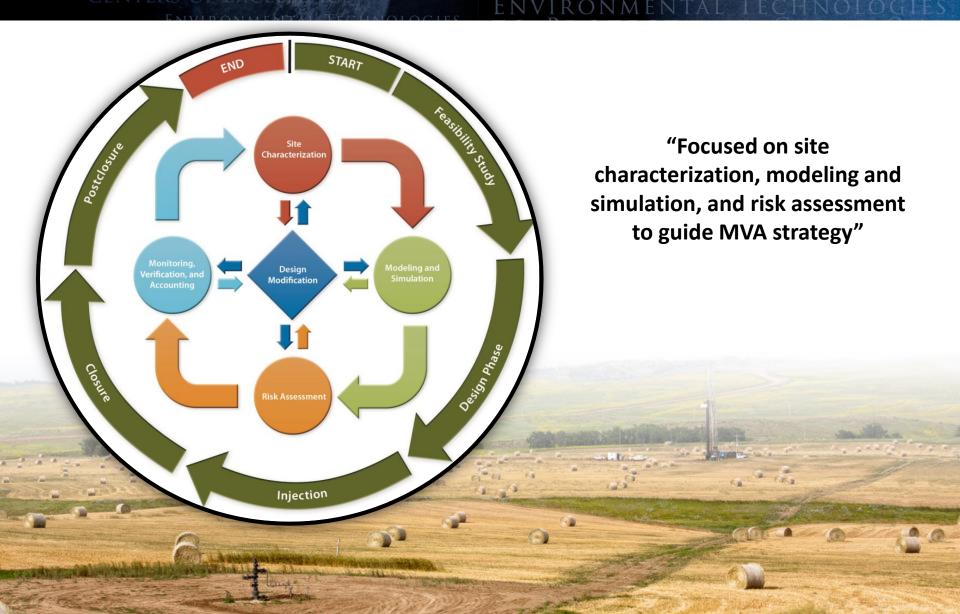
2014 Rocky Mountain Section AAPG Annual Meeting Denver, Colorado
July 20–22, 2014

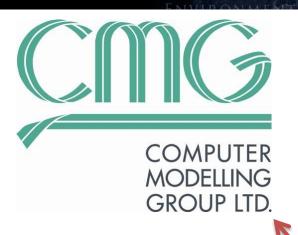
Jason Braunberger

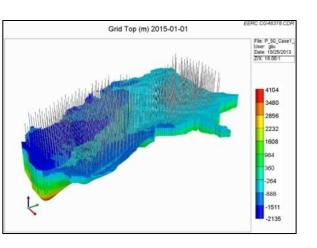
Outline D - CENTER

- Plains CO₂ Reduction Partnership (PCOR)
- Workflow Optimization with Python scripting
 - Integration between software, algorithms, and scripting
 - ♦ Problem #1 Spatially visualizing complex simulation results
 - Solution Plume mapping workflow
 - Other applications
 - ♦ Problem #2 Well spacing optimization
 - Solution Well placement workflow
 - Other applications
- Summary and future applications

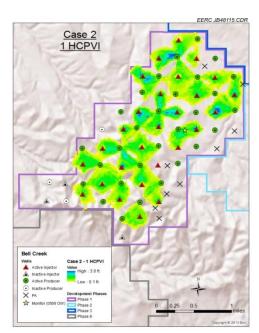
PCOR Partnership

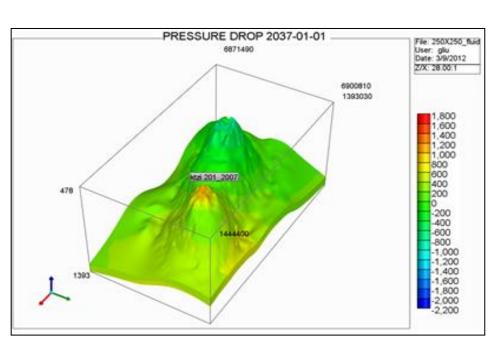


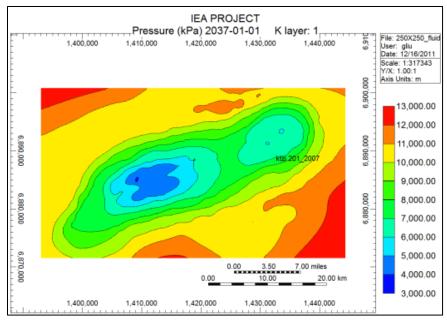



Integrative Approach for MVA

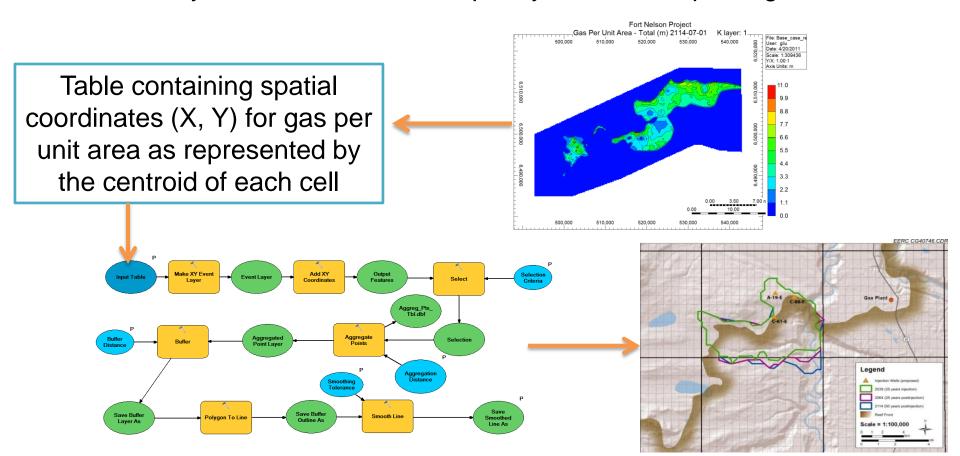
Workflow Optimization with Python

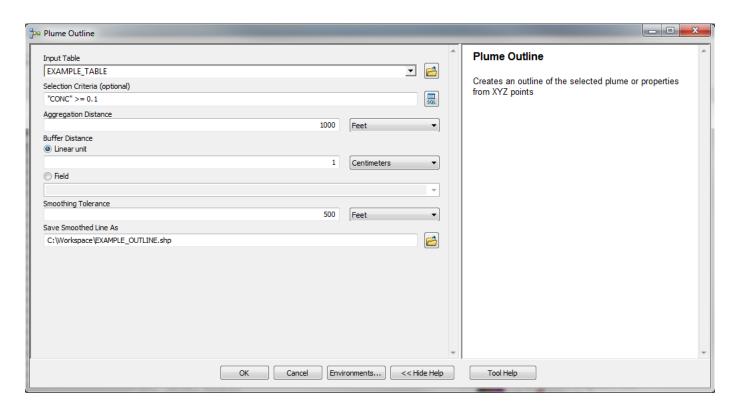




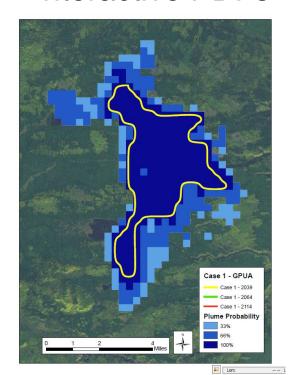

python

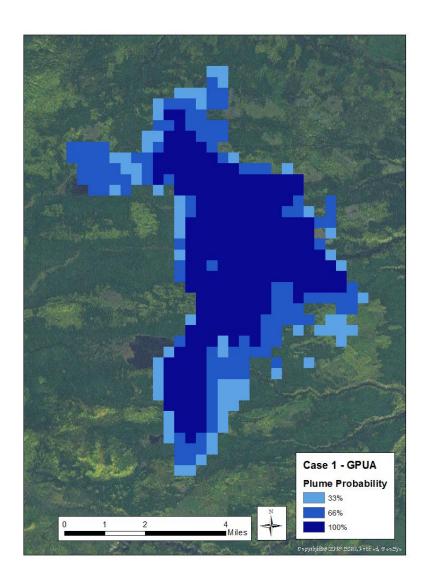
Problem #1 Spatial Data Representation


- Difficult to visualize 3-D simulation results in CMG
 - Spatial coordinates are relative (I, J, K)
 - Calculate total map for property of choice
 - ◆ CMG mapping visualization has minimal colors and cannot add contextual geographic features.


Solution #1 Plume Mapping Workflow

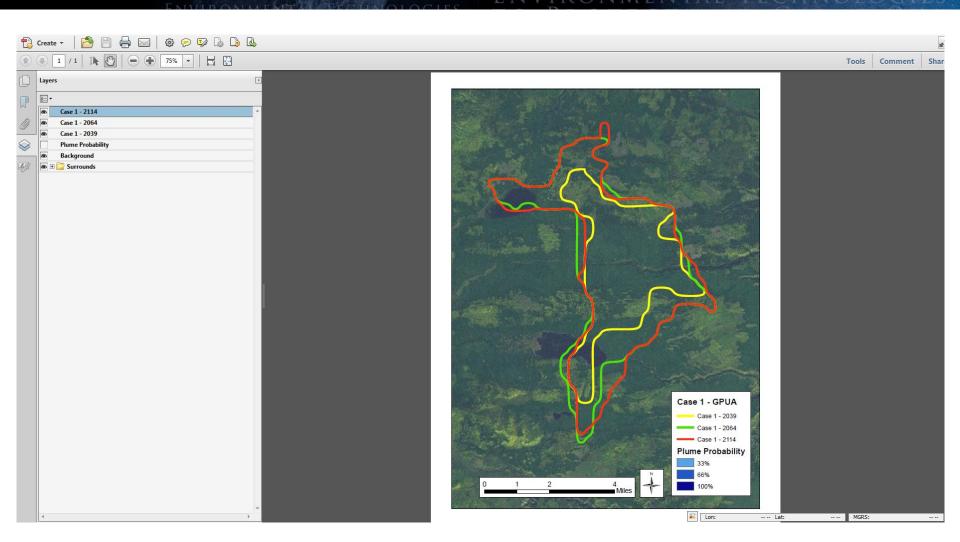
- CMG property exports (ex. GPUA) are not natively read into ArcGIS.
 - Reformat the data using script to a Comma delimited XYZ file.
 - Use Python and XYZ data to quickly create a map using GUI.


Plume Mapping Tool

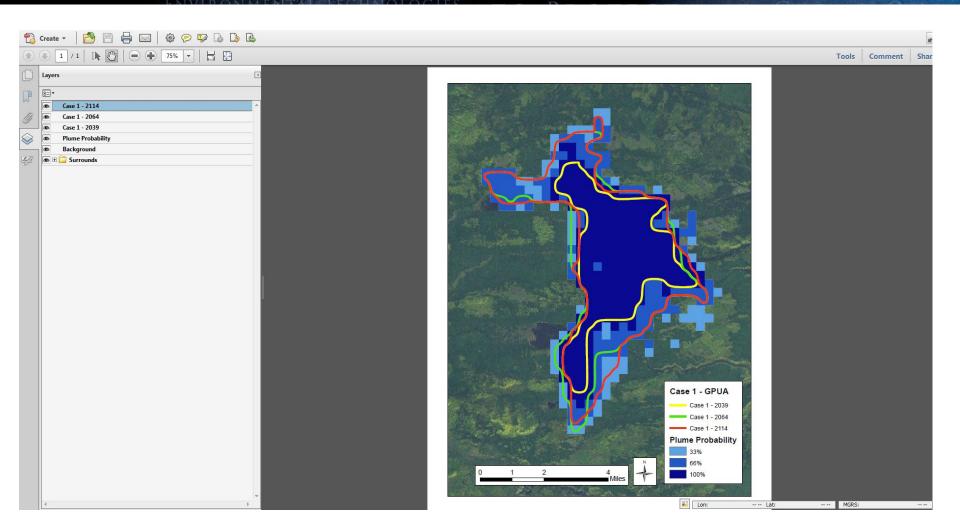

- Utilize ModelBuilder to optimize the workflow.
- Approximately 30 minutes to create each map.
- Toolbox can be shared and imported into ArcMap, allowing use among other users.

Other Applications

- Probability maps
- Fluid saturation maps
- Various risk assessments maps
- Interactive PDFs

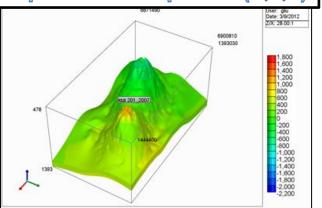

Interactive PDF

♠ ♠ 1 / 1 | I♠ ♥ | ♠ 75% ▼ | ☐ ♣ Comment Shar Case 1 - 2114 Case 1 - 2064 Case 1 - 2039 Background ⊞ Surrounds Case 1 - GPUA Case 1 - 2039 - Case 1 - 2114 Plume Probability 33% 66% Lon:


Interactive PDF cont

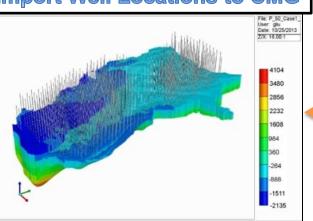
Interactive PDF cont

Problem #2 Well Spacing Optimization

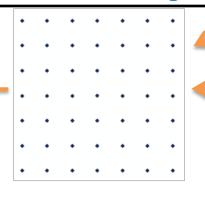

- Develop basin for CO₂ storage:
 - Place hundreds of wells for CO₂ injection in a basin sized model.
 - Manual process is time consuming.
 - Use multiple constraints to place these wells.
 - ◆ Transmissivity, bottom hole pressure, depth, reservoir properties.
- Other uses for field development:
 - Economic forecasting before development begins
 - Reduce uncertainty
 - Decision making

Solution #2 Well Placement Workflow

Export CMG Properties (X,Y,Z)



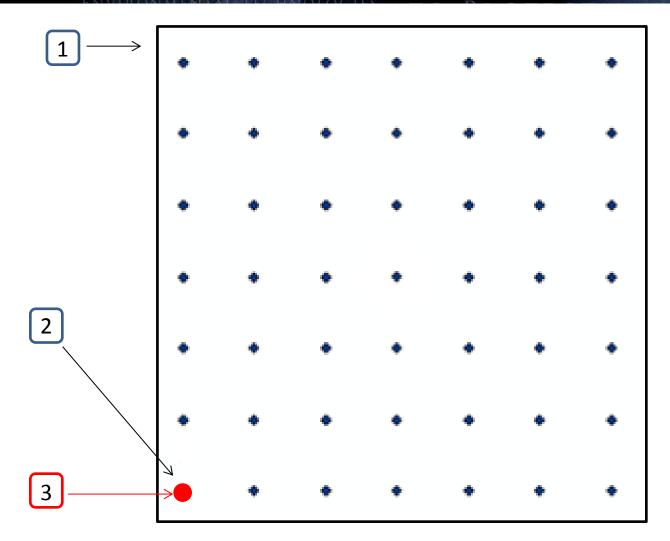
Spatial Join in ArcGIS



SPATIAL JOIN

Import Well Locations to CMG

Well Placement Algorithm

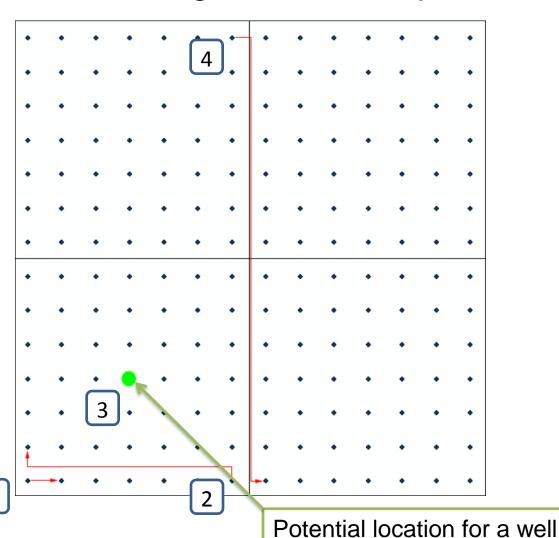

Enter maximum X value (CMG) 599 Enter maximum Y value (CMG) 755 Injectivity per well?

Enter Model Parameters and desired Injectivity into Python script

Well Placement Algorithm

Calculating Transmissivity

- Transmissivity is calculated for each cell block.
 - Permeability * Layer Thickness
 - ♦ The higher the transmissivity, the more desirable the location for well placement.


Well: 2	Injectivity of well:	13633.6984873			
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14	Layer Injectivity 3191.433004 54.602973 4618.686257 1481.152334 9.359688 1044.986201 5.307653 8.978637 7.695837 1.930917 2958.322727 1.565088 146.576123 6.855277 96.245770	Permeability 174.241000 2.981130 252.164000 80.865700 0.511006 57.053500 0.289776 0.490210 0.420161 0.105423 161.514000 0.085448 8.002540 0.374274 5.254680	Cell Thickness 18.316200 18.316200 18.316200 18.316200 18.315900 18.315900 18.315900 18.316400 18.315900 18.316200 18.316200 18.316200 18.316200 18.316200		Pressure 6534.640 6542.570 6550.510 6558.440 6566.370 6574.300 6582.230 6590.160 6598.090 6606.020 6613.950 6621.880 6629.810 6637.750 6645.680
Layer 15 Pressure @ Used	Bottom Layer: 6645.68	3.234080 MD:	14983.72	BHP:	8990.232

Further Applications

Advanced algorithm for well placement

Local Grid Refinement Grid Top (m) 2015-01-01 2232 **Further optimization**

■ Cumulative Injected CO₂ Mass (storage capacity) in Standard Conditions (tonnes

xE6 Volume of Mass Injected CO2 and Water Extraction

Bottom Hole Pressure Calculation

- Layers from 3-D model in Petrel are transferred to ArcGIS.
 - Data is rasterized.
 - Using a Python script, pressures are computed based on measured depth and a pressure gradient.

Well: 2	Injectivity of well:	13633.6984873	_	
	Layer Injectivity	Permeability	Cell Thickness	Pressure
Layer 1	3191.433004	174.241000	18.316200	6534.640
Layer 2	54.602973	2.981130	18.316200	6542.570
Layer 3	4618.686257	252.164000	18.316200	6550.510
Layer 4	1481.152334	80.865700	18.316200	6558.440
Layer 5	9.359688	0.511006	18.316200	6566.370
Layer 6	1044.986201	57.053500	18.315900	6574.300
Layer 7	5.307653	0.289776	18.316400	6582.230
Layer 8	8.978637	0.490210	18.315900	6590.160
Layer 9	7.695837	0.420161	18.316400	6598.090
Layer 10	1.930917	0.105423	18.315900	6606.020
Layer 11	2958. 322727	161.514000	18.316200	6613.950
Layer 12	1.565088	0.085448	18.316200	6621.880
Layer 13	146.576123	8.002540	18.316200	6629.810
Layer 14	6.855277	0.374274	18.316200	6637.750
Layer 15	96.245770	5.254680	18.316200	6645.680
Layer 13	30.243//0	3.234000	10.310200	0043.000
Pressure @ He	ed Rottom Laver: 6645 68	MD: 1	4983.72 Y 6 - RHP	8990 232

Overall Summary

- Can use these tools to evaluate data in 2-D and 3-D
 - Plume management, pressure differences, well placement optimizations, horizontal well evaluation, fracture swarms, geologic probability, seismic correlation
- Integrate results from simulation with other decision making tools
- Assist in decision making processes
- Save countless project hours

Contact Information

Energy & Environmental Research Center

University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

World Wide Web: www.undeerc.org Telephone No. (701) 777-5000 Fax No. (701) 777-5181

Jason Braunberger, Research Manager jbraunberger@undeerc.org

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award Nos. DE-FE0009114 and DE-FC26-05NT42592.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

